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ABSTRACT

This thesis analyses the problem of accurate path following for marine vehicles. The

reference path is generated automatically through the use of a critically damped second order

model. An appropriate shift in the time axis allows a smooth path with zero overshoot regardless

of the initial conditions. Control design for the physical system is achieved through the use of

optimum control and linear quadratic regulator techniques. Results are presented for general

maneuvering scenarios in the horizontal plane and demonstrate the validity of the methods used

in the research.
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I. INTRODUCTION

Accurate path keeping of a marine vehicle through

prescribed routes in space is one of the most important

functions of both manned and unmanned vehicles [Ref. 1]. This

can be achieved by a number of ways, two of the most popular

ones being line of sight (Ref. 2] and cross track error

guidance [Ref. 3]. In general, cross track error schemes are

superior provided an accurate representation of vehicle

dynamics is available. Cross track error control is very

efficient for straight line reference paths. Switching

between consecutive straight line segments is inaccurate since

no reference path is explicitly accounted for [Ref. 3]. This

problem is addressed in this work where we concentrate on two

different aspects of the general path keeping problem. The

first aspect is the generation of a smooth reference path

which joins two consecutive straight line segments.

In ship dynamics problems it is necessary to introduce two

different coordinate systems [Ref. 4]. A global coordinate

system is used to monitor the absolute location of the marine

vehicle with respect to a fixed reference point, while a local

(x,y) frame is introduced to express the relative location of

the vehicle with respect to the desired steady state path.

This coincides with the local x-axis, therefore the local

frame is recomputed each time a new straight line segment is
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commanded. We then seek a smooth reference path that

initiates at the current position of the vehicle and

terminates at the desired straight line segment, the x-axis.

If we nondemensionalize x by the vehicles length L, time t by

L, and the constant vehicle forward speed u, then x and t

assume identical numerical values at steady state. Therefore,

for small deviations in y, a (t,y) graph can be interpreted as

(x,y) as well. This allows us to use an ordinary differential

equation to model the reference path in the local coordinate

frame.

After a smooth reference path has been generated, we

proceed with the control design; we seek a rudder control law

which will drive and keep the vehicle on the reference path.

This is accomplished by using the Linear Quadratic Regulator

design [Ref. 5]. A performance index which penalizes the

deviation of the actual path from the reference path is

formulated and minimized. Finally, we present a series of

numerical simulations which support the techniques used in

this work, along with some recommendations for further

research.
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II. REFERENCE PATH DEVELOPMENT

A. INTRODUCTION

We break the problem of generating a smooth reference path

for the vehicle to follow into two parts. In the first part,

we examine the lane changing maneuver; i.e., the change from

one straight line path to a parallel path. Then we address

the more general case of path following where the two straight

line paths, initial and final form an arbitrary angle on the

plane.

B. LANE CHANGING

Figure 2.1 represents the type of path that we are

interested in during a lane changing maneuver. This type of

path can be achieved when using a differential equation whose

solution is exponential. A first order equation would

generate a path that is too steep for the vehicle to follow,

while on the other hand, a third or higher order equation

would result in oscillatory response with multiple overshoots

of the desired steady state path. For the purposes of this

thesis it was felt that a second order system would provide a

good compromise between fast response and smooth changes.

By using the second order differential equation

3



initial path

turn reference lane
initiation changing path

final path

Figure 2.1 Desired Reference Path
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ý+2C(j•+y=0 (2.1)

with C representing the damping in the system and w

representing the speed of the response of the system, the

following types of paths can be produced using different C and

4.(Figures 2.2 and 2.3) The larger the value of 4 the quicker

the system response and the smaller the C the more the system

over shoots the path.

After review of the above figures, a damping ratio, ( = 1,

was chosen. This seems to provide the smoothest path possible

with no overshoot of the path. A natural frequency, 4 = 1,

was chosen to provide a reasonable time response of the

system. By choosing 4 = 1 we have accounted for the fact

that a physical system with certain mechanical restraints is

being represented and thus we allow for the system to respond

as quickly as possible without overworking.

Solving the above differential equation, the following

equations are formed:

y(t) =Yoe t(1 +t) (2.2)

•(t) =-Yote-t (2.3)

Plotting eqn (2.2) the desired reference path shown in figure

2.4 was produced.
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C. GENERAL REFERENCE PATHS

In the development of the reference path the angle between

the two paths was assumed to be zero. This angle is

designated as a. By using different angles between paths, it

was found that the smooth path developed for the zero angle

was soon lost. As shown in figure 2.5, excessive path

overshoot may develop as the angle a approaches 900. Although

the system remains critically damped, the path cvershoot is

non-zero due to the non-zero initial velocities which is

increased as a -j 90*.

It appeared, therefore, that the reference path was only

good for a zero angle between the two paths. However, it was

felt that if we utilized only that portion of the path that

corresponded to the desired angle, a smooth reference path

with zero overshoot could still be produced.

This is accomplished by breaking the reference path into

two parts. The first is the time that it takes for the path

to get to the desired angle a. This is denoted as T shown in

figure 2.6. The second is the time to finish the reference

path from the angle a. This is denoted as t. The time t is

the start point of the portion of the reference path that is

needed. In actuality the entire reference path is produced

but only that portion of the path that is needed is used in

the simulation and control program.
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If we assume dy(O)/dt = v0 and y(O) = a we obtain the

following from eqns (2.2) and (2.3),

voy=-Yte- t  (2.4)

a=Yoe-t(1+t) (2.5)

with a representing the y axis position and v0 representing

the initial angle from the horizontal of the path which is the

same as a. If we divide by v0 by a we obtain the time it

takes to get to angle a.

vO0_ t (2.6)
a 1+t

This is T. Using T we put this back into our original

equation and we get,

y(t) =y0 exp-(tT (I+ t+T) (2.7)

j(t) =-(t+T) y0exp-(t7. (2.8)

These equations provide the basis for the desired smooth

reference path. A family of reference paths produced using

this technique is shown in figure 2.7 for different initial

slopes a. It can be seen that incorporating the above time T,

the reference path maintains the general shape shown in figure

2.4 regardless of the angle a.
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III. EQUATIONS OF MOTION AND LQR MINIMIZATION DEVELOPMENT

A. INTRODUCTION

Now that a reference path has been developed, an overview

of the appropriate equations of motion and minimization needs

to be presented. We are only concerned with the horizontal

plane, which means that only the steering aspect of the test

vehicle will be considered. This chapter will examine what

are the equations of motions, their augmentation with the

reference path equations, and the LQR minimization used in

order to obtain controller gains.

B. EQUATIONS OF MOTION

By using a nondimentionalized linearized set of equations

of motion for the horizontal plane, the following equations

are developed and shown in state space form.

S=.r (3.1a)

ý'=a 11v+a12r+b1. (3. Ib)

t=a 21v+a22r+b 2a (3. ic)

Y=vcos(r) +sin(*) (3.1d)

With a,, = -1.526394, a,, = -0.5096502, a2 , = 0.028750753,

a.2 = -1.449505, b, = 0.0020674169, and b2 = -2.841506.
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The reference path equation (2.1) is written as

rl =Yr 2 , ((3.2a)

-r = _o y,,-2 C •)y r2' (3 .2b )

where Yr, is the position of the reference path, and Yr2 its

slope. The state equations (3.1) are then augmented with the

reference equations (3.2) and the resulting system is written

as

k=Ax+B8 , (3.3)

where the state vector x is

V

r
x= y

Yr1.

Yr2

and the A, B matrices

0 0 1 00 0

0 al a 12 0 0 0

[A] 0 a 21 a22 0 0 0

1 1 0 0 0 0

0 0 0 0 0 1
0 0 0 0- -2C(
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0
b,

(B] = b 2

0
0
0

C. LINEAR QUADRATIC REGULATOR DESIGN

The LQR method for determining controller gains involves

minimizing a cost function in which the integrand is a

weighted quadratic function of the state x and the control 6,

such as

J'=.!(eTQe+8TR8)dt

where T denotes transpose and e is the error in the state of

the system; i.e., the difference between actual and reference

values. The matrices Q, R represent the different weights in

the minimization index J. Large values of R compared to Q

result in significant penalization of the control effort and

a soft control system. On the other hand, if R is relatively

small, the errors in the states are penalized more and the

result is increased rudder activity and a tight control

system.

In our case we want to minimize the errors in the lateral

deviation and the heading between actual and desired vehicles

path. Therefore, we use

16



f If((y-yý) 2 +(*-y' )2+R8 2]dt

or

J=lf(y2+y2ý-2yyr +2+y2-2*yr +R82) dt

By looking at this equation the appropriate Q is chosen based

on the state equations and is of the form

1 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0[Q] 00 00
0 0 0 1 -1 0
0 0 0 -1 1 0
-1 0 0 0 0 1

In order to obtain the control gains we must solve the

Algebraic Riccatti Equation(ARE) for the positive matrix P

A TP+PA-PBR-IB Tp+Q=O

and the optimal closed loop control is then

u=-kx=-R-B TPX.

The gains k depend on the selection of R. Figure 3.1 shows a

plot of the six gains in k versus R, for the values of R

ranging from 0.01 to 0.5. It can be seen that the gains

become excessively large for R close to 0.01, while they get

17



very small values for R close to 0.5. A good compromise seems

to be about R = 0.1, and this value is therefore selected for

the numerical simulations that follow.

With all of the preliminary control work complete, we can

now apply our control gains to the following control law

8=-kx

and for our system of equations the control law takes the form

8 =k 1 (*-a) +k 2 v+k 3 r+k 4y+ksyr+k6 yr,

We are now ready to analyze our system.

18
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IV SIMULATION RESULTS

A. INTRODUCTION

Now that the control system has been developed, we must

fine tune it in order to insure that the system works

properly. A Matlab program was written which first uses a LQR

minimization to solve the Algebraic Riccatti Equation for the

controller gains and then uses an Euler integration to

simulate the response of the control system. The maneuvering

of any marine vehicle depends greatly on the advance and

transfer characteristics of the vessel. Therefore, the

effectiveness of our system depends largely on what distance

from the end of a designated path that the vehicle must begin

to turn in order to go to the next designated path. This

distance is designated as the target distance. First

different target distances are looked at for one angle a.

Then the chosen target distance is applied to a variety of

angles to ensure conformity.

B. TARGET DISTANCE SELECTION

By using a = 450, target distances ranging from 1.0 to 4.0

shiplengths were used in increments of 0.5. For each target

distance three separate qualifiers were looked at in order to

determine the effectiveness of the system. These were the

20



global path, which showed that the system was traveling the

desired smooth path, the local path, which showed how the

vehicle was following the reference path, and the rudder

angle, which gave indications of how hard the mechanical

system had to work.

For an a = 450 and a target distance = 1.0 we found that

the system would overshoot the path and had difficulty

following the reference path (figures 4.1 and 4.2). In

addition, figure 4.3 shows that the mechanical system would

have to work very hard to try and keep the vehicle on track.

Figures 4.4 and 4.7 show that for an a = 45* and target

distances of 1.5 and 2.0 the system would produce a smooth

path that that was smooth in nature and close to the desired

path. However, the local path showed that the actual track

was not following the referenct- path closely (figures 4.5 and

4.8). Figures 4.6 and 4.9 show the rudder movement of the

system, indicating that the system must still work hard to

maintain the path.

As we moved to larger values of target distance, the

actual path and the reference path moved closer to each other.

Local paths could be generated that where almost on top of

each other. This basically held true for all of the values

beyord the 2.5 shiplength target distance, however, for the

3.5 and 4.0 target distance, it was found that the global path

would stray from the original path (figures 4.10 thru 4.15).

This is attributed to the fact that the reference path is

21



being generated too far away from the new track and too much

of the second order reference path was generated. After

carefully looking at these graphs, it seemed that the best

choice for a target distance would be the 2.5 shiplengths

(figures 4.16 thru 4.18). This distance seemed to provide the

optimum performance of the control system by producing the

desired smooth path, with accurate path following, and not

overworking of the mechanical system.

C. APPLICATION

Now that a target of 2.5 has been chosen, all angles in

the quadrant were observed to ensure that the selected target

distance would perform for all angles (figures 4.19 thru

4.42). It was found that the 2.5 shiplength target distance

would work satisfactorily for all of the angles in the

quadrant. The desired smooth path was produced while the

track followed closely to the reference path. It seems that

the only possible draw back to using the constant target

distance is the work of the mechanical system. As we move to

the higher angles, the system must max out the rudder for

longer periods of time. In comparison this is a relatively

short period of time and should not pose a problem.
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CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A method for developing a smooth reference path has

been developed and presented. This technique is suitable to

any type of marine vehicle and not limited to the test subject

in this thesis. It has been shown that second order models

are very effective in providing a smooth path between two

arbitrary straight line segments. The LQR technique used is

very effective in designing a control law to drive the vehicle

to the reference path. Finally the turn initiation and

reference path generation must conform to vehicle advance and

transfer characteristics.

B. RECOMMENDATIONS

Some recommendations for further research are as follows:

- Study of the effects of sensor noise and imperfection.

- The comparison with other control/guidance schemes.
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"APPENDIX A

% ship path keeping control problem (waypoint)

% vehicle coefficients

all =-1.526394;
a12 =-0.5096502;
a21 = 2.8750753E-02;
a22 =-1.449505;
bl = 2.0674169E-03;
b2 =-2.841506;

% simulation time and time step

stime=500;
deltat=0.1;
itime=stime/deltat;

% damping ratio and natural frequency for the reference
path

zeta=l;
wn=l;

% matrices for state space control design

a=[O 0 1 0 0 0;...
0 all a12 0 0 0;...
0 a21 a22 0 0 0;...
1 1 0 0 0 0;...
0 0 0 0 0 1;...
0 0 0 0 -wn^2 -2*zeta*wn];

b=[O;bl;b2;0;0;0];

% weighing matrices for LQR minimization

q=[I1 0 0 0 0 -1; ...
0 0 0 0 0 0;...
o o 0 0 0 0; ...
o 0 0 1 -l 0; ...
o 0 0 -1 1 0;:...
-l 0 0 0 0 1];

r=0.1;

% solve riccatti equation; compute gains

[k,s]=lqr(a,b,q,r);
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kl=k(1);
k2=k (2);
k3=k(3);

* ~k4=k(4);
k5=k(5);
k6=k(6);

% define waypoints and target distance

ipts=3;
target=input( 'target= ');
ta=input( 'angle= ');
xdes=[O 5 5+15*cos(ta*pi/180)];
ydes=[O 0 15*sin(ta*pi/180)];
xl~xdes(1);
yl~ydes(1);
x2=xdes(2);
y2=ydes(2);
alpha=atan( (y2-yl)/(x2-xl));
xtotal=sqrt( (xl-x2) A2+(y1-y2) '2);

% initial conditions

psi(1)=0;
V(1)=O;
r(1)=O;
Y(l)=0;
x( 1)=O;
dr( 1)=O;

yrl(1)=y(1)*cos(alpha);
yr2(1)=-tan(alpha);
xr(1)=x(l);
yr(1)=y(l);
xawayf=O;
timef=O;
xinit=x(1);
yinit=y(1);
time( 1)=0;
j=1;
istart=2;

% start simulation
% loop over waypoints

for ipt=1:ipts-1
xl=xdes(ipt);
yl=ydes(ipt);

* ~x2=xdes(ipt~e-);
y2=ydes(ipt+1);
x12=x2-xl;
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y12=y2-yl;
alpha=atan( (y12)/(x12));
beta=alpha;
alpha=abs(alpha);
if x12 >- 0

if y12 >=0
alpha = alpha;

end
if y12 < 0

alpha = -alpha;
end

end
if x12 < 0

if y12 >= 0
alpha = pi-aipha;

end
if y12 < 0

alpha = pi+alpha;
end

end

if a == 0;
capt=0;

else
capt -+betal(a-beta);

end;
yo = a/(exp(-capt)*(1+capt));
xtotal=sqrt( (xl-x2) A2+(yl-y 2 ) A2);

%loop for each waypoint

for i=istart: itime
time (i) =i*deltat;
t= (i-istart) *deltat;
j=j4-1;
if j =- 10

sim time = time(i)
alpha
j=0;

end

%equations of motion

psidot(i-1) = r(i-1);
vdot(i-1) = a11*v(i-1)+a12*r(i-l)+b1*dr(i-1);
rdot(i-1) = a21*v(i-1)+a22*r(i-l)+b2*dr(i-1);
ydot(i-1) = sin(psi(i-1))+v(i-1)*cos(psi(i-1));
xdot(i-1) = cos(psi(i-1))-v(i-l)*sin(psi(i-1));

%Euler integration
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psi(i) = psi(i-l) + deltat * psidot(i-1);
v(i) = v(i-1) + deltat * vdot(i-1);
r(i) = r(i-1) + deltat * rdot(i-1);

*yMi = y(i-1) + deltat * ydot(i-1);
x(i) = x(i-1) + deltat * xdot(i-1);

*yrl(i) = yo*exp(-(t+capt))*(1+t+capt);
yr2(i) = -(t+capt)*yo*exp(-(t+capt));

% coordinate changes

xprime=(x(i)-x1)*cos(alpha)+(y(i)-y1)*sin(alpha);
xaway=xtotal-xprime;
ypr=yrl(i);
xpr=xprime;
yr(i)=y1+xpr*sin(alpha)+ypr*cos(alpha);
xr(i)=x1+xpr*cos(alpha) -ypr*sin(alpha);

% control law

dr(i) = (k1*(psi(i)-alpha)+...
k2*v(i)+...
k3*r(i)+...
k4*yp(i)+...
k5*yrl(i)+..
k6*yr2(i));

if dr(i) > 0.4
dr(i)=0.4;

end
if dr(i) < -0.4

dr(i)=-0.4;
end

% hit test; turn indication point

xaway=xtotal-xprime;
if xaway <= target
istart=i+1; xinit~x(i); yinit~y(i);
xawayf=xaway; timef~time (i);

break, end

end
end

dr (1) =dr (2);

% plot results

plot(x,y,xr,yr, 1:1,xdes,ydes,'o') ,xlabel('x') ,ylabel( 'y'),.

title( 'global path')
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print
plot(time,yp,time,Yrl),ylabel('path deviation'),...

pitxlabel( 'time') ,title( 'local path')

plot(time,dr) ,xlabel( 'time') ,ylabel( 'rudder angle')

%clear
end
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